\( \newcommand{\Esp}[1]{\mathbb{E}\left[#1\right]} \newcommand{\as}[1]{ \overset{\mathrm{a.s}} {#1} } \newcommand{\convArrow}[2]{ { \underset{#1\rightarrow +\infty}{#2} } } \newcommand{\convAs}[1]{ \as{\convArrow{#1}{\rightarrow}} } \newcommand{\simInf}[1]{\convArrow{#1}{\sim}} \newcommand{\iid}{\mathrm{i.i.d.}} \newcommand{\qc}{q^*} \newcommand{\cut}[1]{{#1}^\dagger} \newcommand{\dom}[1]{{#1}_{\mathrm{m}}} \newcommand{\ydom}{\dom{y}} \newcommand{\ycut}{\cut{y}} \newcommand{\hdom}{\dom{h}} \newcommand{\hcut}{\cut{h}} \newcommand{\R}{\mathbb{R}} \newcommand{\Prob}{\mathbb{P}} \newcommand{\neff}{n_{\mathrm{eff}}} \newcommand{\fun}[1]{\mathrm{#1}} \newcommand{\p}[1]{\left(#1\right)} \)
Critical order in moment estimation :
insights from statistical physics
Florian Angeletti
27 June 2013

Moment : \( \Esp{X^q} \)

Moment estimator :

\[ S(n,q) = \frac{1} {n} \sum_{i=1}^n X_i^q, \quad X_i \ge 0 \]

Law of large number:

X_i independent and identically distributed (\(\iid \) )
\[S(n,q) \convAs{n} \Esp{X^q} \]

Finite sample size n?

(n-q) plane Transition line : \( S(n,\qc(n)) \)
(inspired by [Ben Arous and al., Probab. Theory Related Fields , 2005])

Power laws

  • Finite moment order \(q_l\), \( \Esp{X^{q_l}} = +\infty \)

Regular laws

  • Characteristic function \( \Esp{e^{\imath w X}} \) analytic in \(0\).
  • \( \forall q>0,\quad \Esp{X^{q}} \in \R \)
  • \( \qc(n) \asymp \frac{\ln n}{\ln \ln n} \) (A. Kagan and al, Statistics & Probability Letters, 2001)

Irregular laws

  • \( \forall q>0,\quad \Esp{X^{q}} \in \R \)
  • \(\Esp{e^{\imath w X}} \) non-analytic in \(0\).
  • \( \qc(n) \)?

Exponential irregular laws

  • \( X_i = e^{Y_i} \)
  • \( \Prob(Y_i>y) = e^{-y^\rho L(y)},\) with \( \rho>1 \)
  • L slowly varying function : \( L(tx) \simInf{x} L(x) \)


\( \rho \): tail heaviness parameter

    Example :
  • Log-normal law: \(\rho = 2\)
    Frontiers:
  • \( \rho \rightarrow +\infty \) : regular laws
  • \( \rho \rightarrow 1 \) : power laws

Log-weibull distribution family

  • \( F_Y(y) \equiv \Prob(Y>y) = e^{-y^\rho} \)

Log-gamma distribution family

  • \( p_Y(y) = \frac{\rho}{2 \Gamma(1/\rho)} e^{-y^\rho} \)
\( \rho=1.5 \)
\( \rho=2 \)
\( \rho=3 \)

Compound Poisson motion \(Z(t)\)

cascade

Z(t): Multifractal increasing random walk

Correlation

\( \Esp {X(a,t) X(a,t+s)} = \) \( \frac{1}{\lambda(2)\, (\lambda(2)-1)} \left( |s+a|^{\lambda(2)} + |s-a|^{\lambda(2)} - 2 |s|^{\lambda(2)} \right), \)
  • No characteristic scale

Linearisation effect also present

A simplified spin glass model [Derrida, Phys. Rev. B, 1981]
How to translate arguments from the REM to moment estimation?

Competition between two effects

  • Concentration effect
  • Finite size effect
\[ \Esp{X^q}=\int e^{qy-\phi(y)}\mathrm{\; d y}\quad \text{ with } \phi = -\ln p_Y.\] Saddle point method when \(q \rightarrow +\infty\): \[ \ln \Esp{X^q} \approx q \ydom - \phi(\ydom) \]

Concentration Point \( \ydom(q) \)

\[ \ydom(q): \phi'(\ydom) = q \]

Cutoff point \( \ycut \)

\[ \ycut(n):\quad P(Y> \ycut(n))=\frac{1}{n} . \]
Truncated moments : excluding the contribution of the points beyond \( \ycut \) \[ M_t(n,q) = \int_{-\infty}^{\ycut} e^{qy-\phi(y)} \mathrm{d}\;y \]

Theorem:

\[ \lim_{n\rightarrow + \infty}\frac{\ln S(n,q(n) )}{\ln n} \as{=} \lim_{n\rightarrow + \infty} \frac{ \ln M_t(n,q(n)) } {\ln n} \]

Truncated moment \( \Rightarrow \) typical value of the moment estimator

Critical order \( \qc(n) \)

\[ \qc(n): \ydom(\qc) = \ycut(n) \] \[ \qc(n) \sim_{n\rightarrow +\infty} \rho \frac{\ln n} {\ycut(n)} \]
Prediction of the linearisation point:
\( n=10^2 \)
\( n=10^3 \)
\( n=10^6 \)
Behavior of \( \ln \frac{S(n,q)}{\Esp{X^q}} \) in function of \(\frac q {\qc} \)

\(n\rightarrow +\infty \)

\[ \qc(n) \varpropto (\ln n)^{1 - \frac{1}{\rho}}. \]
More details in arxiv:1204.3047
\[ \qc(n) = \color{red}{\rho_l(\ycut(n))} \color{blue}{ \frac{\ln n} {\ycut(n)} } \equiv \color{red}{\rho_E} \color{blue}{\theta} \]

Estimation of \(\qc\)

  • \(\qc\) only depends on information available from the empirical cumulative \( \Rightarrow \) \( \qc \)is estimable
  • \( (1-1/n)\)-quantile estimation (\(\color{blue}{\ycut(n)}\))
  • Local power exponent at the last quantile (\( \equiv \color{red}{\rho_l(\ycut(n))} \))
  • Theoretical and numerical analysis of the performance
\[ \theta = \frac{\ln n}{F^{-1}_Y(\frac{1}{n})} \]

Estimation of \( F^{-1}_Y(\frac{1}{n}) \)

\( \hat{\theta}_{k_{\theta}} = \frac{\ln n}{\Omega_{k_{\theta}} } \)

log-weibull log-gamma
\( \rho=1.1\)
\( \rho=2\)
\( \rho=3\)
Relative mean square error
Relative bias
\[ \rho= \rho_l\left(F^{-1}_n \left(\frac 1 n\right) \right) \]
log-weibull log-gamma
\( \rho=1.1\)
\( \rho=2\)
\( \rho=3\)
Relative mean square error
Relative bias
\[ \hat{q}^* = \color{red}{ \hat{\rho}_ {E,k_{\rho_E}} } \color{blue}{ \hat{ \theta}_{k_\theta}} \]
log-Weibull log-gamma
\( n=1000, \rho \)
\( \rho=2, n \)
Relative mean square error
Relative bias
Correlation \( \mathrm{Corr}(t) = \exp(-t/\tau)\)
\( \color{red}{\tau=10} \),
\( \color{green!40!black}{\tau=50} \),
\( \color{blue}{\tau=100} \)
More details in arxiv:1204.3047

Scaled variable \( h \)

\[ H_a(t) = \frac{ \ln X(a,t) } { \ln a } = \frac{ Y(a,t) } {| \ln a |} . \]
{}

Probability density function of \( H_a \)

Large deviation theory and Gartner-Ellis theorem \( \Rightarrow \) \[ p_{H_a} (h) \asymp a^{\psi(h)} \] \( \psi(h) \) Fenchel-Legendre transform of \( \lambda(q)\)
\[ \Esp {X(a,t)^q} \approx \int_{-\infty}^{+\infty} e^{-|\ln a| [ q h + \psi(h) ]}\, dh \] Saddle point method when \(a \rightarrow 0\): \[ \Esp {X(a,t)^q} \approx -|\ln a| [ q \hdom - \psi(\hdom) ] \]

Concentration Point \( \hdom(q) \)

\[ \hdom(q):\quad \psi'(\hdom(q) ) = q \]
\[ \hcut(a) = \hdom(\qc) \]

Critical order \( \qc(a) \)

\[ 1 + \qc \lambda'(\qc) - \lambda(\qc) = 0. \]
More details in arxiv:1012.3688
Under a reasonable conjecture: \[ \frac{ \ln S(a,q)} {\ln a} \convAs{\ln a} \zeta(q) \]

Linearisation effect

\[ \zeta(q) =\begin{cases} \lambda(q), & -1 \lt q \leq \qc, \\ 1 + q \lambda'(\qc), & q \gt \qc.\\ \end{cases} \]
linearisation effet
\( Z \Leftrightarrow S(n,q) \) \( \lambda_e(q) = \lim_{a\rightarrow 0} \ln S(a,q) / \ln a \)

Analogy REM\( \Leftrightarrow \) Moments

Entropy \( s(\beta)\)   \( \Huge{ \Leftrightarrow} \)   \( 1+q \lambda_e'(q)-\lambda_e(q) \)
Glassy transition at \( \beta_c \) \(\Huge{ \Leftrightarrow }\) Moment linearisation at \(\qc\)

Summary

Connected questions

Outlook