\[S(n,q) \convAs{n} \Esp{X^q} \] |
Log-weibull distribution family
![]() ![]() |
Log-gamma distribution family
![]() ![]() |
Prediction of the linearisation point:
|
\( n=10^2 \)
\( n=10^3 \)
\( n=10^6 \)
|
Behavior of \( \ln \frac{S(n,q)}{\Esp{X^q}} \) in function of \(\frac q {\qc} \)
|
log-weibull | log-gamma | |
\( \rho=1.1\) | |
|
\( \rho=2\) | |
|
\( \rho=3\) | |
|
log-weibull | log-gamma | |
\( \rho=1.1\) | |
|
\( \rho=2\) | |
|
\( \rho=3\) | |
|
log-Weibull | log-gamma | |
\( n=1000, \rho \) | | |
\( \rho=2, n \) | | |
Entropy \( s(\beta)\) |   \( \Huge{ \Leftrightarrow} \)   | \( 1+q \lambda_e'(q)-\lambda_e(q) \) |
| | |
Glassy transition at \( \beta_c \) | \(\Huge{ \Leftrightarrow }\) | Moment linearisation at \(\qc\) |