$S(n,q) \convAs{n} \Esp{X^q}$ |
Slow $q(n) \ll \qc(n) $ $ S(n,q(n)) \asymp \Esp{X^{q(n)}} $ |
Critical $ \qc(n) $ |
Fast $ q(n) \gg \qc(n) $ $ S(n,q(n)) \asymp e^{q \max \{X_i\}} $ |
Log-weibull distribution family
![]() ![]() |
Log-gamma distribution family
![]() ![]() |
Prediction of the linearisation point:
|
$ n=10^2 $
$ n=10^3 $
$ n=10^6 $
|
Behavior of $ \ln \frac{S(n,q)}{\Esp{X^q}} $ in function of $\frac q {\qc} $
|
log-weibull | log-gamma | |
$ \rho=1.1$ | |
|
$ \rho=2$ | |
|
$ \rho=3$ | |
|
log-weibull | log-gamma | |
$ \rho=1.1$ | |
|
$ \rho=2$ | |
|
$ \rho=3$ | |
|
log-Weibull | log-gamma | |
$ n=1000, \rho $ | | |
$ \rho=2, n $ | | |
Entropy $ s(\beta)$ |   $ \Huge{ \Leftrightarrow} $   | $ 1+q \lambda_e'(q)-\lambda_e(q) $ |
| | |
Glassy transition at $ \beta_c $ | $\Huge{ \Leftrightarrow }$ | Moment linearisation at $\qc$ |