$ \newcommand{\Esp}[1]{\left<#1\right>} \newcommand{\as}[1]{ \overset{\mathrm{a.s}} {#1} } \newcommand{\convArrow}[2]{ { \underset{#1\rightarrow +\infty}{#2} } } \newcommand{\convAs}[1]{ \as{\convArrow{#1}{\rightarrow}} } \newcommand{\simInf}[1]{\convArrow{#1}{\sim}} \newcommand{\iid}{\mathrm{i.i.d.}} \newcommand{\qc}{q^*} \newcommand{\cut}[1]{{#1}^\dagger} \newcommand{\dom}[1]{{#1}_{\mathrm{m}}} \newcommand{\ydom}{\dom{y}} \newcommand{\ycut}{\cut{y}} \newcommand{\hdom}{\dom{h}} \newcommand{\hcut}{\cut{h}} \newcommand{\R}{\mathbb{R}} \newcommand{\Prob}{\mathbb{P}} \newcommand{\neff}{n_{\mathrm{eff}}} \newcommand{\fun}[1]{\mathrm{#1}} \newcommand{\p}[1]{\left(#1\right)} \newcommand{\lt}{<} \newcommand{\gt}{>} $
Critical order in moment estimation :
insights from statistical physics
Florian Angeletti
5 January 2015

Moment : $ \Esp{X^q} $

Moment estimator :

\[ S(n,q) = \frac{1} {n} \sum_{i=1}^n X_i^q, \quad X_i \ge 0 \]

Law of large number:

$X_i$ independent and identically distributed r.v. ($\iid $ )
$S(n,q) \convAs{n} \Esp{X^q}$

Finite sample size $n$?

(n-q) plane Transition line : $ S(n,\qc(n)) $
(inspired by [Ben Arous and al., Probab. Theory Related Fields , 2005])
Slow $q(n) \ll \qc(n) $
$ S(n,q(n)) \asymp \Esp{X^{q(n)}} $
Critical $ \qc(n) $
Fast $ q(n) \gg \qc(n) $
$ S(n,q(n)) \asymp e^{q \max \{X_i\}} $

Power laws

  • Finite moment order $q_l$, $ \Esp{X^{q_l}} = +\infty $

Regular laws

  • Characteristic function $ \Esp{e^{\imath w X}} $ analytic in $0$.
  • $ \forall q>0,\quad \Esp{X^{q}} \in \R $
  • $ \qc(n) \asymp \frac{\ln n}{\ln \ln n} $ (A. Kagan and al, Statistics \& Probability Letters, 2001)

Irregular laws

  • $ \forall q>0,\quad \Esp{X^{q}} \in \R $
  • $\Esp{e^{\imath w X}} $ non-analytic in $0$.
  • $ \qc(n) $?

Log-normal distribution

  • All moments $\Esp{X_i^q}$ are finite
  • $\Esp{e^{\imath w Y }} $ is not analytic in $0$
  • Infinite numbers of distributions with the same integer moments $\Esp{X^n}$

Exponential irregular laws

  • $ X_i = e^{Y_i} $
  • $ \Prob(Y_i>y) = e^{-y^\rho L(y)},$ with $ \rho>1 $
  • L slowly varying function : $ L(tx) \simInf{x} L(x) $


$ \rho $: tail heaviness parameter

Frontiers:

Log-weibull distribution family

  • $ F_Y(y) \equiv \Prob(Y>y) = e^{-y^\rho} $

Log-gamma distribution family

  • $ p_Y(y) = \frac{\rho}{2 \Gamma(1/\rho)} e^{-y^\rho} $
$ \rho=1.5 $
$ \rho=2 $
$ \rho=3 $
A simplified spin glass model [Derrida, Phys. Rev. B, 1981]
How to translate arguments from the REM to moment estimation?

Competition between two effects

  • Concentration effect
  • Finite size effect
\[ \Esp{X^q}=\int e^{qy-\phi(y)}\mathrm{\; d y}\quad \text{ with } \phi = -\ln p_Y.\] Saddle point method when $q \rightarrow +\infty$: \[ \ln \Esp{X^q} \approx q \ydom - \phi(\ydom) \]

Concentration Point $ \ydom(q) $

\[ \ydom(q): \phi'(\ydom) = q \]

Cutoff point $ \ycut $

\[ \ycut(n):\quad P(Y> \ycut(n))=\frac{1}{n} . \]
Truncated moments : excluding the contribution of the points beyond $ \ycut $ \[ M_t(n,q) = \int_{-\infty}^{\ycut} e^{qy-\phi(y)} \mathrm{d}\;y \]

Theorem:

\[ \lim_{n\rightarrow + \infty}\frac{\ln S(n,q(n) )}{\ln n} \as{=} \lim_{n\rightarrow + \infty} \frac{ \ln M_t(n,q(n)) } {\ln n} \]

Truncated moment $ \Rightarrow $ typical value of the moment estimator

Critical order $ \qc(n) $

\[ \qc(n): \ydom(\qc) = \ycut(n) \] \[ \qc(n) \sim_{n\rightarrow +\infty} \rho \frac{\ln n} {\ycut(n)} \]
Prediction of the linearisation point:
$ n=10^2 $
$ n=10^3 $
$ n=10^6 $
Behavior of $ \ln \frac{S(n,q)}{\Esp{X^q}} $ in function of $\frac q {\qc} $

$n\rightarrow +\infty $

\[ \qc(n) \varpropto (\ln n)^{1 - \frac{1}{\rho}}. \]
More details in arxiv:1204.3047
\[ \qc(n) = \color{red}{\rho_l(\ycut(n))} \color{blue}{ \frac{\ln n} {\ycut(n)} } \equiv \color{red}{\rho_E} \color{blue}{\theta} \]

Estimation of $\qc$

  • $\qc$ only depends on information available from the empirical cumulative $ \Rightarrow $ $ \qc $is estimable
  • $ (1-1/n)$-quantile estimation ($\color{blue}{\ycut(n)}$)
  • Local power exponent at the last quantile ($ \equiv \color{red}{\rho_l(\ycut(n))} $)
  • Theoretical and numerical analysis of the performance
\[ \theta = \frac{\ln n}{F^{-1}_Y(\frac{1}{n})} \]

Estimation of $ F^{-1}_Y(\frac{1}{n}) $

$ \hat{\theta}_{k_{\theta}} = \frac{\ln n}{\Omega_{k_{\theta}} } $

log-weibull log-gamma
$ \rho=1.1$
$ \rho=2$
$ \rho=3$
Relative mean square error
Relative bias
\[ \rho= \rho_l\left(F^{-1}_n \left(\frac 1 n\right) \right) \]
log-weibull log-gamma
$ \rho=1.1$
$ \rho=2$
$ \rho=3$
Relative mean square error
Relative bias
\[ \hat{q}^* = \color{red}{ \hat{\rho}_ {E,k_{\rho_E}} } \color{blue}{ \hat{ \theta}_{k_\theta}} \]
log-Weibull log-gamma
$ n=1000, \rho $
$ \rho=2, n $
Relative mean square error
Relative bias
Correlation $ \mathrm{Corr}(t) = \exp(-t/\tau)$
$ \color{red}{\tau=10} $,
$ \color{green!40!black}{\tau=50} $,
$ \color{blue}{\tau=100} $
More details in arxiv:1204.3047

Compound Poisson motion $Z(t)$

cascade

Z(t): Multifractal increasing random walk

Correlation

$ \Esp {X(a,t) X(a,t+s)} = $ $ \frac{1}{\lambda(2)\, (\lambda(2)-1)} \left( |s+a|^{\lambda(2)} + |s-a|^{\lambda(2)} - 2 |s|^{\lambda(2)} \right), $
  • No characteristic scale

Linearisation effect also present

Scaled variable $ h $

\[ H_a(t) = \frac{ \ln X(a,t) } { \ln a } = \frac{ Y(a,t) } {| \ln a |} . \]

Probability density function of $ H_a $

Large deviation theory and Gartner-Ellis theorem $ \Rightarrow $ \[ p_{H_a} (h) \asymp a^{\psi(h)} \] $ \psi(h) $ Fenchel-Legendre transform of $ \lambda(q)$
\[ \Esp {X(a,t)^q} \approx \int_{-\infty}^{+\infty} e^{-|\ln a| [ q h + \psi(h) ]}\, dh \] Saddle point method when $a \rightarrow 0$: \[ \Esp {X(a,t)^q} \approx -|\ln a| [ q \hdom - \psi(\hdom) ] \]

Concentration Point $ \hdom(q) $

\[ \hdom(q):\quad \psi'(\hdom(q) ) = q \]
\[ \hcut(a) = \hdom(\qc) \]

Critical order $ \qc(a) $

\[ 1 + \qc \lambda'(\qc) - \lambda(\qc) = 0. \]
More details in arxiv:1012.3688
Under a reasonable conjecture: \[ \frac{ \ln S(a,q)} {\ln a} \convAs{\ln a} \zeta(q) \]

Linearisation effect

\[ \zeta(q) =\begin{cases} \lambda(q), & -1 \lt q \leq \qc, \\ 1 + q \lambda'(\qc), & q \gt \qc.\\ \end{cases} \]
linearisation effet
$ Z \Leftrightarrow S(n,q) $ $ \lambda_e(q) = \lim_{a\rightarrow 0} \ln S(a,q) / \ln a $

Analogy REM$ \Leftrightarrow $ Moments

Entropy $ s(\beta)$   $ \Huge{ \Leftrightarrow} $   $ 1+q \lambda_e'(q)-\lambda_e(q) $
Glassy transition at $ \beta_c $ $\Huge{ \Leftrightarrow }$ Moment linearisation at $\qc$

Summary

Connected questions

Outlook